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Qutrit state engineering with biphotons
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The novel experimental realization of three-level optical quantum systems is presented. We use
the polarization state of biphotons to generate a specific sequence of states that are used in the
extended version of BB84 QKD protocol. We experimentally verify the orthogonality of the basic
states and demonstrate the ability to easily switch between them. The tomography procedure is
employed to reconstruct the density matrices of generated states.
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The art of quantum state engineering, i.e., the ability
to generate, transmit and measure quantum systems is of
great importance in the emerging field of quantum infor-
mation technology. A vast majority of protocols relying
on the properties of two-level quantum systems (qubits)
were introduced and experimentally realized. But nat-
urally, there arose a question of an extension of dimen-
sionality of systems used as information carriers and the
new features that this extension can offer. The sim-
plest extension provokes the usage of three-state quan-
tum systems (qutrits). Recently new quantum key distri-
bution (QKD) protocols were proposed that dealt specif-
ically with qutrits [1, 2] and the eavesdropping analysis
showed that this systems were more robust against spe-
cific classes of eavesdropping attacks [3, 4]. The other
advantage of using multilevel systems is their possible
implementation in the fundamental tests of quantum me-
chanics [5], giving more divergence from classical theory.
The usage of multilevel systems also provides a possibil-
ity to introduce very specific protocols, which cannot be
implemented with the help of qubits such as Quantum
Bit Commitment, for example [6]. Recent experiments
on realization of qutrits rely on several issues. In one
case, the interferometric procedure is used, where entan-
gled qutrits are generated by sending an entangled pho-
ton pair through a multi-armed interferometer [7]. The
number of arms defines the dimensionality of the sys-
tem. Other techniques rely on the properties of orbital
angular momentum of single photons [6, 8, 9] and on
postselection of qutrits from four-photon states [10]. Un-
fortunately all mentioned techniques provide only a par-
tial control over a qutrit state. For example in a method,
mentioned in [6, 8, 9] a specific hologram should be made
for given qutrit state. The real parts of the amplitudes
of a qutrit, generated in [7] are fixed by a characteristics
of a fiber tritter, making it hard to switch between the
states. Besides, in this method no tomographic control

over generated state had been yet performed.
In this paper we report the experimental realization

of arbitrary qutrit states that exploits the polarization
state of single-mode biphoton field. This field consists
of pairs of correlated photons, is most easily obtained
with the help of spontaneous parametric down-conversion
(SPDC). By saying ”single-mode” we mean that twin
photons forming a biphoton have equal frequencies and
propagate along the same direction. A pure polarization
state of such field can be written as the following super-
position of three basic states.

|Ψ〉 = c1|2, 0〉 + c2|1, 1〉 + c3|0, 2〉 = c1|α〉 + c2|β〉 + c3|γ〉, (1)

where ci = |ci|e
iφi are complex probability amplitudes.

The states |2, 0〉 and |0, 2〉 correspond to type I phase-
matching where twin photons have collinear polarization
vectors (for example, state |2, 0〉 corresponds to two pho-
tons being in horizontal H polarization mode), and state
|1, 1〉 is obtained via type II phase-matching, where pho-
tons are polarized orthogonally (say, one of them is in
H and the other one is in V mode). There exists an al-
ternative representation of state |Ψ〉 that maps the state
onto the surface of the Poincare sphere [11]

|Ψ〉 =
a†(θ, φ)a†(θ′, φ′)|vac〉

‖ a†(θ, φ)a†(θ′, φ′)|vac〉 ‖
, (2)

where a†(θ, φ) and a†(θ′, φ′) are the creation operators
of a photon in a certain polarization mode a†(θ, φ) =
cos(θ/2)a† + e(iφ)sin(θ/2)b†, a†, b† are photon creation
operators in correspondingly horizontal and vertical po-
larization modes, θ ∈ [0, π], φ ∈ [0, 2π] are polar and
azimuthal angles that define the position of each pho-
ton on the surface of a sphere. The values of the angles
can be calculated using the amplitudes and the phases
of ci. The operational orthogonality criterion for the po-
larization states of single-mode biphotons was proposed
in [12] and experimentally verified in [13]. According
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to the orthogonality criterion for biphoton polarization
states, two polarization states Ψa and Ψb are orthogonal
if one observes zero coincidence rate in the Brown-Twiss
scheme, provided that the state Ψa is at the input, and
polarization filters in each arm are tuned to assure max-
imal transmittance of each photon forming the state Ψb

(set state). The goal of our work was to demonstrate the
ability to prepare any given polarization state |Ψ〉 and as
a straightforward and practical example of given states,
we chose the specific sequence that was presented in [1].
This sequence of 12 states forms four mutually unbiased
bases with three states in each, and can be used in an
extended version of BB84 QKD protocol for qutrits. The
12 states are defined in Table I.

State |c1| |c2| |c3| φ1 φ2 φ3

|α〉 1 0 0 0 0 0

|β〉 0 1 0 0 0 0

|γ〉 0 0 1 0 0 0

|α′〉 1√
3

1√
3

1√
3

0 0 0

|β′〉 1√
3

1√
3

1√
3

0 120◦ −120◦

|γ′〉 1√
3

1√
3

1√
3

0 −120◦ 120◦

|α′′〉 1√
3

1√
3

1√
3

120◦ 0 0

|β′′〉 1√
3

1√
3

1√
3

0 120◦ 0

|γ′′〉 1√
3

1√
3

1√
3

0 0 120◦

|α′′′〉 1√
3

1√
3

1√
3

−120◦ 0 0

|β′′′〉 1√
3

1√
3

1√
3

0 −120◦ 0

|γ′′′〉 1√
3

1√
3

1√
3

0 0 −120◦

TABLE I: 12 states used in qutrit QKD protocol

The preparation part of our setup (Fig. 1) is built on the
base of a balanced Mach-Zehnder interferometer (MZI)
[14]. The pump part consists of frequency doubled ”Co-
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FIG. 1: Experimental setup (preparation part)

herent Mira 900” femtosecond laser, operated at central
wavelength of 800 nm, 75 MHz repetition rate and with a
pulse width of 100 fs, average pump power was 20 mW.
The Glan-Tompson prism (GP), transmitting the hori-
zontally polarized fraction of the UV pump and reflect-
ing the vertically polarized fraction, serves as an input
mirror of MZI. The reflected part, after passing the com-
pensation BBO crystal and a half-wave plate (HWP2),
pumps two consecutive 1 mm thick type-I BBO crystals

whose optical axis are oriented perpendicularly with re-
spect to each other. The biphotons from these crystals
pass through a 10 mm quartz plate (QP1) that serves as a
compensator, and the pump is reflected by an UV mirror.
Then the biphotons arrive at a dichroic mirror (DM) that
is designed to transmit them and to reflect the horizon-
tally polarized component of the pump coming from the
upper arm of MZI. A piezoelectric translator (PZT) was
used to change the phase shift of the horizontal compo-
nent of the pump with respect to the one propagating in
the lower arm. The UV beam, reflected from DM serves
as a pump for 1 mm thick type-II BBO crystal. Two 1
mm quartz plates (QP2) can be rotated along the optical
axis to introduce a phase shift between horizontally and
vertically polarized type-I biphotons, and a set of four
1 mm thick quartz plates (QP3) serves to compensate
the group velocity delay between orthogonally polarized
photons during their propagation in type II BBO crys-
tal. The measurement setup (Fig. 2) consists of a Brown-
Twiss scheme with a non-polarizing 50/50 beamsplitter;
each arm contains consecutively placed quarter- and half
waveplates and an analyzer that was set to transmit the
vertical polarization. This sequence of waveplates and

FIG. 2: Experimental setup (measurement part)

analyzer is referred to as a polarization filter. Interfer-
ence filters of 5 nm bandwidth, centered at 800 nm and
pinholes are used for spectral and spatial modal selection
of biphotons. We use EGG-SPCM-AQR-15 single pho-
ton counting modules as our detectors (D1 and D2). We
should mention, that due to the low pump power, the
stimulated processes in our setup are negligibly small
and only pairs of photons have been generated. The
measurement of the generated states is done using the
tomography protocol that was developed for polarization
qutrits [16]. In order to reconstruct the density matrix of
the measured state (which is generally mixed) one has to
perform nine projective measurements of the fourth-order
moments of the field for different settings of polarization
filters. Polarization density matrix can be defined in the
following way in terms of these moments [16, 17].

2ρ11 = 〈a†2a2〉,
√

2ρ21 = 〈a†2ab〉,
2ρ33 = 〈b†2b2〉,

√
2ρ32 = 〈a†b†b2〉,

ρ22 = 〈a†b†ab〉, 2ρ31 = 〈a†2b2〉.
(3)

This configuration of the measurement setup (Fig. 2) al-
lows us to verify the orthogonality of the states that be-
long to the same basis.
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Compensation. In order to have the three terms in
superposition (1) interfering, one must achieve their per-
fect overlap in frequency, momentum and time domains.
From the experimental point of view this means that the
biphoton wavepackets coming from the two type I crys-
tals and from the type II crystal must be overlapped.
The overlap in the frequency domain is achieved by the
usage of 5nm bandwidth interference filters and the over-
lap in momentum is ensured by using pinholes that select
one spatial mode of the biphoton field. But the overlap
in time cannot be achieved easily when using a pulsed
laser source, because it is necessary to compensate for all
the group delays that biphoton wavepackets acquire dur-
ing their propagation through the optical elements of the
setup [15]. It was found that in order to overlap type-I
biphotons with type-II, the pump pulse from the lower
arm must be delayed. In our case the value of the delay is
50 ps. This was achieved by inserting an additional 2 mm
BBO crystal in the lower arm. The overlap between the
states |2, 0〉 and |0, 2〉 was achieved by inserting a 10 mm
quartz plate directly after the two type I BBO crystals.
After overlapping the biphotons with these techniques,
the average coincidence count rate that we observed was
of about 1 Hz. The high visibility of interference patterns
that we obtained was a criterion for a good compensa-
tion.

Experimental procedure. In order to create a given
qutrit state we needed to have independent control over
four real parameters - two relative amplitudes and two
relative phases. In the experiment we used HWP1 to
control the amplitude of the state |1, 1〉, and HWP2 to
control the relative amplitudes of the states |2, 0〉 and
|0, 2〉. The relative phase φ13 = φ3 − φ1 between the
states |2, 0〉 and |0, 2〉 can be controlled with the help of
rotating quartz plates (QP2). The relation of the phase
φ12 = φ2 −φ1 between the state |Ψ′〉 = |2, 0〉+ eiφ13 |0, 2〉
and |1, 1〉 to the voltage applied to PZT can be found by
monitoring the pump interference pattern in M-Z inter-
ferometer. We found that the change of voltage by 1 V
resulted in the phase shift of 51.7◦ and φ12 grew linearly
with the applied voltage.

States that constitute the first basis are trivial (Table
I). They can be produced with the help of a single crystal,
corresponding to type I or type II interaction. State |2, 0〉
is generated when first λ/2 (HWP1) angle corresponds to
the maximal reflection of the pump beam into the lower
arm of a Mach-Zehnder and the angle of the second half-
lambda waveplate (HWP2) is equal to 0◦. In order to
generate state |0, 2〉, the HWP2 must be rotated by 45◦

degrees from 0◦, and to generate state |1, 1〉 the HWP1
is rotated such, that the whole pump goes into the upper
arm of Mach-Zehnder. Therefore, in the following, we
will consider only the generation of the rest nine states,
i.e. those forming the other three bases. According to
Table I, only the relative phases between the basic states
are to be varied. This allows us to use the same settings

of the HWP’s for the generation of nine states. It is also
convenient to perform three sets of data acquisition - for
the fixed φ13 values of 0, +120◦ and −120◦, we change φ12

values in the range of, say, few periods and perform all
tomographic measurements for each value of the phase
φ12. Then we select the values of φ12 that correspond
to the generation of the required state. For example, in
order to generate the state β′, we use φ13 = −120◦ and
φ12 = 120◦. The values of the moments at this point
allow us to restore a raw density matrix of the generated
state and compare it to the theoretical value.

The following procedure was used in order to verify
the orthogonality of the states that form a certain ba-
sis. First we chose a set state to which we would tune
our polarization filters. Then the values of the angles
of quarter- and half- waveplates (Fig. 2) (χ1, θ1, χ2, θ2)
that assure the maximal projection of the polarization
state of each photon on the V direction can be calcu-
lated by mapping the set state on the Poincare sphere.
Here, the lower index ”1” corresponds to the transmitted
arm, and the index ”2” to the reflected arm of BS We
chose states |α′〉, |α′′〉 and |α′′′〉 to be our set states for
each basis. Then, by setting the phase φ13 fixed and by
varying the phase φ12 we measured the number of coinci-
dence counts that correspond to the certain fourth order
moment of the field. According to the orthogonality cri-
terion, the coincidence rate should fall to zero when the
values of φ13 and φ12 correspond to the generation of the
states orthogonal to the set ones.

Results and discussion. Let us consider the gener-
ation of the state |β′′〉. In this case φ13 = 0, φ12 = 120.
In Fig. 3 the measured values of the real and imaginary
parts of the density matrix components ρ21 and ρ32 on
phase φ12 are shown as function of the phase φ12. The
number of accidental coincidences was negligibly small
and was not subtracted in data processing.

FIG. 3: Imaginary and real values of non-diagonal density
matrix components used to reconstruct state |β′′〉. Theoreti-
cal dependence is plotted with a solid curve.

The phase φ13 = 0 remained constant during the to-
mography procedure. After obtaining the dependence of
the moments ρ21 and ρ32 on phase φ12 we fitted our data
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with theoretical dependencies, using the least-square ap-
proximation method. The obtained values of all compo-
nents were substituted in Eq. 3. The obtained density
matrix for state |β′′〉 is given below.

ρβ′′ =





0.355 −0.054 − 0.210i 0.315 − 0.010i

−0.054 + 0.210i 0.340 −0.106 + 0.262i

0.315 + 0.010i −0.106 − 0.262i 0.305





(4)

The eigenvalues of this matrix are λ1 = 0.877, λ2 =
0.136, λ3 = −0.013. A corresponding set of eigen-
vectors is X = (0.587,−0.173 + 0.521i, 0.594 −
0.071i); Y = (0.642, 0.379 − 0.649i, 0.048 + 0.143i); Z =
(0.493,−0.287 + 0.224i,−0.769− 0.178i). Although the
density matrix (Eq. 4) is Hermitian and the condition
Tr(ρ) = 1 is satisfied, it doesn’t correspond to any phys-
ical state because of the negativity of one of the eigen-
values. We want to point out that a first main compo-
nent (ρ1

exp)ij = XiX
∗
j of a considered density matrix,

which has a weight 0.878 is already close to the theo-
retical state vector |β′′〉 and the corresponding fidelity
is F = Tr(ρthρ1

exp) = 0.9903. The other two compo-
nents correspond to the ”experimental noise” that is due
mainly to misalignments of a setup and small volume of
collected data. Even at this point, the obtained raw fi-
delity values show the high quality of a generated state.
We have obtained similar eigenvalues for all other states
and raw fidelity computed for the main density matrix
component as described above have varied from 0.983
to 0.998. We also employed the maximum likelihood
method of quantum state root estimation (MLE) [16, 18]
to make a tomographically reconstructed matrix satisfy
its physical properties, such as positivity. The results
are presented in the following table (Table II). The level
of statistical fluctuations in fidelity estimation was de-
termined by the finite size of registered events (∼ 500).
All experimental fidelity values lie within the theoretical
range of 5%(F = 0.9842) and 95%(F = 0.9991) quantiles
[16, 19].

State FMLE State FMLE State FMLE

|α′〉 0.9989 |α′′〉 0.9967 |α′′′〉 0.9883

|β′〉 0.9967 |β′′〉 0.9989 |β′′′〉 0.9989

|γ′〉 0.9883 |γ′′〉 0.9883 |γ′′′〉 0.9967

TABLE II: Fidelities estimated with Maximum Likelihood
Method

The obtained fidelity values show the high quality of
the prepared states. Altogether with the high visibil-
ity of the interference patterns that we obtained, we
can conclude that our technique for the preparation of

qutrits is quite reliable. The other test of the quality
of prepared states is the fulfillment of the orthogonality
criterion for the states that belong to the same basis.
For each set state we calculated the settings of wave-
plates in our measurement setup that ensured the max-
imal projection of each photon on the vertical polariza-
tion direction. In Fig. 4 we show the dependence of the
coincidence rate for the following setting of waveplates
χ1 = 28.3◦, θ1 = −33.5◦, χ2 = −24◦, θ2 = −2◦. These
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FIG. 4: Dependence of number of coincidences on a phase φ12

for a given settings of polarization filters.

values correspond to the set state |α′′′〉. As one can
see, for the fixed value φ13 = 0 the coincidence rate is
almost equal to zero, when phase φ12 = −120◦. This
corresponds to the generation of the state |β′′′〉, which
is orthogonal to |α′′′〉. The visibility of this pattern is
equal to 93.2%. For the other bases, the obtained values
of visibilities varied from 92% to 95%. With these values
of visibility, the lowest value of coincidence rate corre-
sponds to the accidental (Poissonian) coincidence level
and therefore the obtained data verifies the orthogonal-
ity criterion.

Conclusions. We realized an interferometric method
of preparing the three-level quantum optical systems,
that relied on the polarization properties of single-mode
two-photon light. The specific sequence of states was
generated and measured with high fidelity values. The
orthogonality of the states that form mutually unbiased
bases was experimentally verified. As an advantage of
this method we note that all control of the amplitudes
and phases of each basic state in superposition (1) is done
using linear optical elements, making it easy to switch
from one state to another and providing the full control
over the state (1). The main disadvantage is that we
cannot generate an entangled qutrits in this configura-
tion. Our setup also allows one to prepare an arbitrary
polarization qutrit state on demand.
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